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The problem of finding a physically realizable, i.e.

constant gain, output-feedback controller which will

stabilize an unstable plant is one of the oldest and

most fundamental problems in control theory. In spite

of its long history, this problem still remains unsolved

even in the seemingly simple case of linear plants.

In this paper, an iterative procedure for determining

the constant gain matrix that will stabilize a linear

constant multivariable system using output feedback is

described. The use of this procedure avoids the trans-

formation of variables which is required in other procedures.

For the case in which the product of the output and input

vector dimensions is greater than the number of states of

the plant, we are able to give a rather general solution.

In the case in which the states exceed the product of

input and output vector dimensions we are able to present

a least square solution which may not be stable in all cases.

The results are illustrated with examples.



1. DITRODUCTION

The design of linear multivariable control systems using output

feedback has attracted the attention of many authors [Davison 1970,

Fallside and Seraji 1971, Sridhar and Lindorff 1973, Fortmann 1973,

Seraji 1973, and others]. There are two ways of approaching this

problem. The first method consists of estimating the states of the

system using an observer and using these states in the subsequent

design. In the second approach, either static or dynamic feedback of

the output is used directly in the control problem and this view is

adopted here.

Most of the techniques discussed in the literature for approach

two require the system matrix to be transformed to a canonical form

which may cause some loss of physical insight. This paper describes

an iterative procedure for determining the constant gain matrix that

will stabilize a linear constant multivariable system using output

feedback gains without the necessity of transforming variables while

achieving a satisfactory degree of stability and damping ratio. The

resultant control problem is algebraic and hence easy to solve.

2. PROBLEM STATEMENT

Consider a linear time-invariant controllable and observable

system

x(t) = A x(t) + Bu(t)

(1)
y(t) = C x(t)

where the state x, input u and output y have dimensions n, m and

p, respectively. The output feedback control law is given by

u(t) = G y(t) (2)



where G is a constant mxp feedback gain matrix. Direct substitution

of (2) in (1) yields

x(t) = 'A + BGC) x(t)

(3)
y(t) = C x(t)

The stability of (3) depends primarily on the eigenvalues of A + BGC.

If all the eigenvalues have real parts strictly, less than -v for

v > O, then the system will be said to have degree of stability v. The

damping ratio of a stable complex eigenvalue is defined as the cosine of

its angle with the negative real axis, and is a measure of how oscillatory

the trajectory will be. The eigenvalues-of A are determined from

IA - XiIl = 0, i = 1, 2,. . ... , n (4)

With these basic definitions the next section outlines the procedure

for distinct eigenvalues.

3. PROCEDURE FOR DISTINCT EIGENVAUES

Assume for the time being that the system to be controlled has

distinct eigenvalues. If the system matrix A varies to A + 5A, then

the corresponding variation in the eigenvalue is given by (Rosenbrock 1965]

trace Q -SA]

r trace (Q]

where

n

Q= TT (A -XI) (6)
i=l
ifr

From equation (5) it is possible to write an expression for 6A in

terms of 6X, If we assume that 6A results due to the output feedback



of equation (2) with the gain matrix denoted by 6G then

6A = B - 5G - C (7)

By substituting equation (7) in (5) and simplifying it is possible to

write a linear equation for the elements of the gain matrix as

mp

Lrk = r tr [Q], r = 1, 2 . . . . n. (8)

k=l

where 5G.. is the ijth element of the matrix 5G. Since there are
1J

n distinct eigenvalues, there are n independent equations. It is

thus possible to write the overall equation as

P - 3g = V (9)

where P is a known matrix of order n x mp, bg is the mp vector

corresponding to the unknown elements of the gain matrix and V is a

known constant of order n. Since the equation (5) is only valid for

small perturbations, variations in the eigenvalues are applied in small

steps in the desired direction to compute 6g. An iterative pr9cedure

in which the gain elements were computed in small steps to achieve a

desired degree of stability and damping ratio was developed and tested on

several example problems.

Since the P matrix is of order nxmp, the solution of the unknown

mp vector bg depends primarily on the relative magnitude of mp and

n. Hence some special cases of interest are treated below:

(i) mp = n: The computation of the gain matrix is unique for a

particular problem. In this case P of equation (9) is a square matrix

of order n and the computation of the gain matrix is given by



-1bg = P V (10)

(ii) mp > n: In this case (mp - n) elements of the gain matrix

may assume arbitrary values and the remaining n elements are computed

as above.

(iii) mp < n: In this case we have more equations than the unknowns

and the best possible solution is the least square solution of (9) namely,

Tg (PTp)-1pTV (11)

However, a stable output feedback is not guaranteed for gain elements

computed this way.

A simple necessary condition proposed by Seraji (1973) gives a method

to check whether the output feedback gains will stabilize the unstable

plant or not.

4. PROCEDURE FOR MULTIPLE EIGENVALUES

The previous section illustrates the procedure for computing the

gain matrix for the case in which the eigenvalues are distinct.

Difficulty occurs for multiple eigenvalues because equation (5) is then

indeterminate. One solution is to differentiate both the numerator and

denominator terms of equation (5) with respect to the multiple eikenvalue

and use this expression in place of equation (5). The feedback gain per-

turbations are computed as before. Then using the newly computed gain

matrix, the true eigenvalues of the closed loop system matrix are

computed. It has been observed that the true eigenvalues often differ

from the expected eigenvalues; however, the sum of the changes in the

true eigenvalues is nearly equal to the sum of the perturbations

requested in the eigenvalues. When this happens, the true eigenvalues

are then distinct and the procedure illustrated in the last section may

be followed.



5. EXAMPLES

With these theoretical background it is possible to write a

computer program. However, because of the complexity of handling

complex matrix operations it is not possible to write a general program.

Some of the examples are illustrated below:

Example 1: mp = n, distinct eigenvalues. Consider the system given

by equation (1) with

1 0 0 0

A= 0 2 0 0

0 0 -3 o

o o0 0 -4

1 0

0 1
B = (13)

1 0

1 1

C= 1 (14)

Using the program to place the poles to the left of -1 line, the gain

matrix using output feedback is given by

4.(2 o

O03 0



and the closed loop system has the following eigenvalues:

-4; -3; -1.0053; -1.0050
Example 2: mp > n, distinct eigenvalues. In the previous example

change the B matrix to

1 0 0

0 1 0
B = (16)

O 0 1

1 1 1

The gain matrix obtained to place the closed loop poles to the

left of -1.0 line then is

4.0378 0.0235

G = -9.047 -0.0294 (17)

o0.043 0.0

with the last two elements of the third row chosen arbitrarily and the

closed loop poles are

-4.009118; -3. 0;-,o100'48; -1.001543

Example 3: mp < n, distinct eigenvalues. Consider the examples with

0 1 0

A ~ 0 1 (18)

1 0 0

B = 1 (19)

0



C = (20)

The open loop poles are at

1.0: -0.5 + j 0.866025

Using the above procedure the least square solution for the gain matrix

being

G = -2.7077 -4.0921]

the closed loop poles are

0.135627; -2.113864 + j 1.704338.

Note that the least square solution does not stabilize the overall

system. As illustrated before, the sign criterion proposed by Seraji

fails and hence stabilization by means of output feedback matrix is

not possible for this problem.

Example 4: mp = n, multiple eigenvalues. Consider the system

-3 0 0 0 1 0

0 -2 0 0 0 1
x(t) = x(t) + u(t) (21)

0 0 1 0 1 -1

0 0 0 1 0 1

y(t 1 0
y(t) = x(t) (22)

1 -1



The open loop poles has one unstable double pole. Using the procedure

given in section 4, the gain matrix obtained being

[-5.8476 -4.35]

G = (23)
).4007 2.60

and the closed loop poles are

-3.0053; -1.9242; -1.00013; -0.996466

6. CONCLUSIONS

In summary, for a controllable, observable system an iterative

technique to determine the constant gain matrix that will stabilize

a linear constant multivariable system using output variable feedback

is presented. The method consists of adjusting iteratively the

unstable eigenvalues in a desired direction to achieve a satisfactory

degree of stability and damping ratio. From the development of the

procedure it may be seen that the method has the advantage that is

not necessary to transform variables and thereby lose physical sitnifi-

cance. The resultant control problem also is algebraic and simple to

compute.
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